
ahb_sram rev 1.0 Copyright, 2017 Fen Logic Ltd.

www.verilog.pro 1

Synchronous memory access module
G.J. van Loo

28-February-2017

Introduction

The Synchronous memory access module sits between an AHB bus and a synchronous memory. Its

main purpose is to eliminate dead cycles due to the incompatibility of the AHB bus and the timing

requirements of a synchronous memory. It also converts the AHB bus signals into byte-write strobes

for the memory.

AHB synchronous memory write buffer.

The timing of the AHB bus gives excellent access to synchronous memory on reads. However without

precautions, the system incurs a one cycle delay for each read-follows-write cycle. The main task of

the AHB_SRAM module is to remove the one cycle delay by using a write-buffer. The details of this

are explained in the next sections.

Read-follows-write delay

Below is the timing diagram of an AHB bus cycle. The address is preceding the data by one clock

cycle for both read and write.

adrs A adrs B

data B data C

adrs C

data A

Clk

Address

Data

Standard AHB bus cycles

These are the timing diagrams of a read and write access to a synchronous memory:

adrs A

data A

Clk

Data

Enable

Memory read

adrs A

data A

Clk

Address

Data

Enable

Memory write

As you can see a memory read access corresponds to an AHB bus cycle. However the write access

does not. In order to write to a synchronous memory from an AHB bus we have to delay1 the address

by one cycle in order for the address and data to line up:

adrs A

data A

Clk

Address

Data

Enable

AHB write to sync. memory

adrs AAddress delayed

Enable delayed

1 Unfortunately we cannot move the data forward as we have not yet found a way to look into the future.

ahb_sram rev 1.0 Copyright, 2017 Fen Logic Ltd.

www.verilog.pro 2

Thus on a write we present the delayed AHB address to the memory instead of the AHB address.

This is all very well but if we have a read following the write we have to present two addresses to the

memory at the same time:

read adrs

write data

Clk

Address

Data

Memory read-follows-write

Delayed write address

write adrs

write adrs

read data

read adrs

clash

The only way around that is to insert a wait state on the bus, to delay the read by once cycle, probably

delaying the processor also for a cycle.

Solution.

The one cycle delay can be eliminated by adding a write buffer. Upon writing to the memory the data

is not written to the memory directly. Instead the write address and data go into a write buffer.

The write buffer is flushed to the memory when a new write request comes in. Because the address

and the write data are both available in the write buffer, the write can be done in the same cycle as

where the new write address arrives.

This is shown in the diagram below.

adrs A

data A

Clk

Address

Data

write

adrs B

data B

adrs A

data A data A

adrs A adrs B

Write buffer
flush

Write buffer address

Write buffer data

The write buffer is also flushed if no memory access takes place.

Buffer read-back.

The write buffer causes an inconsistency in that the memory contents does not reflect the required

status as one location may be incorrect. Thus if a read request comes in, the read address is compared

against the write buffer address. If there is a match the data comes (partially) from the write buffer,

not the memory. The term ‘partially’ is used as the write strobes can indicate that only part of the

write buffer should be written and thus only part should be used in the read-back. The module will

mix the data from the memory with that of the write buffer to return the actual required information.

Copyright

Although there is no copyright on the provided Verilog code, this document is copyright protected

against publication. Thus this document may be copied together with the Verilog code, but re-usage in

whole or in part in any publication or usage and/or posting on any website is subject to copyright

laws.

February 28, 2017 Fen Logic Ltd.

