
Doc rev 1.2 20-Sept.-2015

1

APB
Free ware, 2015
Fen Logic Ltd.

Description
The ARM APB interface is used by many IP providers. In this directory you will find various
APB related code examples. The docs directory has a copy of the ARM APB AMBA
specification.

apb_regs:
A basic example how to read status signals and generate control signals from the APB bus.
It has read/write bits, read status bit and static read bits.

apb_regs1:
A small variation on the apb_regs code where read-only and read-write bits are combined in
the same address.

apb_wrtsetclr.v:
An example of write-bits-to-set and write-bits-to-clear code.

apb_pulse.v:
An example how to generate a pulse which is high for one apb-clock cycle. All pulses
generated here appear in the cycle after the APB access has completed.

apb_fifo.v:
An example how to access a synchronous FFO from the APB bus. It shows how to write to a
FIFO, read from a FIFO and return the FIFO status signals. It also uses the ‘pulse’ code to
generate a FIFO clear pulse.

apb_levirq.v:
Example of dealing with level interrupts. The module has four incoming interrupts a control
register (for interrupt enables) and a status register (for incoming interrupt status bits and
pending interrupts status).

apb_edgeirq.v:
Variant of the above. This module detects, stores and deals with interrupt pulses. The
module has four incoming interrupts a control register (for interrupt enables) and a status
register (for incoming interrupt status bits and pending interrupts status).

apb_decode.v:
This module is an address decoder which splits the APB bus in several regions. For details
see the section about address decoder below.

apb_fastdecode.v:
Variant of the above. This decoder has lex flexibility in addressable regions, but is much
smaller and faster.

apb_bus.v:
This is a behavioural model of the APB bus which can generate APB read and write cycles.
It is extensively used in the test-benches which test all the above mentioned code.

Write-to-set/clear
Write-to-set and write-to-clear register are used mostly in multi-threaded/ multi -tasking
applications. It allows independent (or a-synchronous) pieces of software to share one
control register. The alternative is that the user must use semaphores to change a register
which is very expensive in terms of software cycles and resources.

Doc rev 1.2 20-Sept.-2015

2

A write-to-set register sets only those bits high which the user is writing as high. Assume a
register with the value 0xAA00FF00. Performing a write-to-set on that register with the value
0x55555555 will set all even bits. The odd bits will remain unchanged. Thus the result will be
0xFF55FF55.

A write-to-clear register clears only those bits high which the user is writing as high. Assume
a register with the value 0xAA00FF00. Performing a write-to-clear on that register with the
value 0x55555555 will clear all even bits. The odd bits will remain unchanged. Thus the
result will be 0xAA005500.
Beware that where the user writes a one, the result in the register bit will be a zero!

Interrupts
The interrupt modules have the following register mapping:

Address offset Description Type Notes

0x00 Control R/W Has the four interrupt enable bits

0x04 Status RO Has eight interrupt status bits

0x04 Clear WO Interrupt clear bits (apb_edgeirq.v only)

The control register for both the apb_levirq and apb_edgeirq has the following organisation:

0x0: Reset = 0x00000000

Bits Description

31:4 Unused/reserved

3 Enable for interrupt_request[3]
0 : Interrupt is disabled
1 : Interrupt is enabled

2 Enable for interrupt_request[2]
0 : Interrupt is disabled
1 : Interrupt is enabled

1 Enable for interrupt_request[1]
0 : Interrupt is disabled
1 : Interrupt is enabled

0 Enable for interrupt_request[0]
0 : Interrupt is disabled
1 : Interrupt is enabled

Doc rev 1.2 20-Sept.-2015

3

The status register of the apb_levirq has the following organisation:

0x4 (Read Only): Reset = 0x00000000

Bits Description

31:8 Unused/reserved

7 interrupt pending[3] : interrup request[3] is 1 & interrupt_enable[3] is 1
0 : interrupt_pending[3] is low
1 : interrupt_pending [3] is high (generating an interrupt)

6 interrupt pending[2] : interrup request[2] is 1 & interrupt_enable[2] is 1
0 : interrupt_pending[2] is low
1 : interrupt_pending [2] is high (generating an interrupt)

5 interrupt pending[1] : interrup request[1] is 1 & interrupt_enable[1] is 1
0 : interrupt_pending[1] is low
1 : interrupt_pending [1] is high (generating an interrupt)

4 interrupt pending[0] : interrup request[0] is 1 & interrupt_enable[0] is 1
0 : interrupt_pending[0] is low
1 : interrupt_pending [0] is high (generating an interrupt)

3 Status of interrupt_request[3] input
0 : interrupt_request[3] is low
1 : interrupt_request[3] is high

2 Status of interrupt_request[2] input
0 : interrupt_request[2] is low
1 : interrupt_request[2] is high

1 Status of interrupt_request[1] input
0 : interrupt_request[1] is low
1 : interrupt_request[1] is high

0 Status of interrupt_request[0] input
0 : interrupt_request[0] is low
1 : interrupt_request[0] is high

Doc rev 1.2 20-Sept.-2015

4

The status register of the apb_edgeirq has the following organisation:

0x4 (Read, Write clear): Reset = 0x00000000

Bits Description

31:8 Unused/reserved

7 interrupt pending[3] : edge_seen[3] is 1 & interrupt_enable[3] is 1
0 : interrupt_pending[3] is low
1 : interrupt_pending [3] is high (generating an interrupt)

6 interrupt pending[2] : edge_seen[2] is 1 & interrupt_enable[2] is 1
0 : interrupt_pending[2] is low
1 : interrupt_pending [2] is high (generating an interrupt)

5 interrupt pending[1] : edge_seen[1] is 1 & interrupt_enable[1] is 1
0 : interrupt_pending[1] is low
1 : interrupt_pending [1] is high (generating an interrupt)

4 interrupt pending[0] : edge_seen[0] is 1 & interrupt_enable[0] is 1
0 : interrupt_pending[0] is low
1 : interrupt_pending [0] is high (generating an interrupt)

3 Read: Status of edge_seen[3] register bit
0 : edge_seen[3] is low
1 : edge_seen[3] is high

Write : Change edge_seen[3] register bit
0 : edge_seen[3] remains unchanged
1 : edge_seen[3] is cleared

2 Read: Status of edge_seen[2] register bit
0 : edge_seen[2] is low
1 : edge_seen[2] is high

Write : Change edge_seen[2] register bit
0 : edge_seen[2] remains unchanged
1 : edge_seen[2] is cleared

1 Read: Status of edge_seen[1] register bit
0 : edge_seen[1] is low
1 : edge_seen[1] is high

Write : Change edge_seen[1] register bit
0 : edge_seen[1] remains unchanged
1 : edge_seen[1] is cleared

0 Read: Status of edge_seen[0] register bit
0 : edge_seen[0] is low
1 : edge_seen[0] is high

Write : Change edge_seen[0] register bit
0 : edge_seen[0] remains unchanged
1 : edge_seen[0] is cleared

Decoders
The decoder modules splits the APB bus in a number of address regions. It does this by:

 Splitting the psel, making one for each region

 Multiplexing the result signals: prdata, pready, pslverr.
Each module has a PORTS parameter which specifies how many regions the bus should be
split into.
Additionally each module has a TOP_DEFAULT parameter.

 If that is set to zero all addresses which are out of the specified address range
generate a pslverr.

 If that is set to one all addresses which are out of the specified address range are
handled by the highest port.

Doc rev 1.2 20-Sept.-2015

5

prdata.

Unfortunately interfaces or arrays of ports are not supported by most simulation let alone
synthesis tools. Thus the prdata return path is made up from one very wide port:

input [PORTS*32-1:0] prdata,

You have to connect all return data path as one big concatenation:

 .prdata { <port n bus>,... <port 0 bus> },

My preferred method dealing with that is to use an array and connect that up:

wire [31:0] m_prdata [0:3];

...

.m_prdata ({m_prdata[3],

 m_prdata[2],

 m_prdata[1],

 m_prdata[0]}

),

For the full code have a look at the test benches.

Pass through

The module has a lot of signals which are passed through. Some companies don’t like that.
But as the full source code is available you can re-write them.

apb_decode.v
The apb_decode.v module has two parameters to specify the outgoing address range:
BOTREGION : Sets the start address of port[0] (psel[0])
REGION : Sets the size of each port.
The table below shows how this splits the address map for a 4 port module:

Port Lowest address
(Inclusive)

Highest address
(Exclusive)

0 BOTREGION BOTREGION+REGION

1 BOTREGION+REGION BOTREGION+2*REGION

2 BOTREGION+2*REGION BOTREGION+3*REGION

3 BOTREGION+3*REGION BOTREGION+4*REGION

Thus port[0] starts at address BOTREGION and ends just below BOTREGION+REGION.

apb_fastdecode.v
The apb_fastdecode.v module use significant less logic and is thus much faster than the
normal decoder. It is limited in other ways:

 An address region can only be a power of two.

 The first address region always starts at zero.

 It does NOT do a full address decode thus ports can appear multiple mapped.

It has one parameter to specify the outgoing address range:
MS_SLVADR : Set the MS address bit going to a port.
The table below shows how this splits the address map for a 4 port module for two different
values of MS_SLVADR:

Doc rev 1.2 20-Sept.-2015

6

Port Lowest address
SLVADR=10

Highest address
SLVADR=10

Lowest address
SLVADR=15

Highest address
SLVADR=15

0 0x0000_0000 0x0000_07FC 0x0000_0000 0x0000_FFFC

1 0x0000_0800 0x0000_0FFC 0x0001_0000 0x0001_FFFC

2 0x0000_1000 0x0000_17FC 0x0002_0000 0x0002_FFFC

3 0x0000_1800 0x0000_1FFC 0x0003_0000 0x0003_FFFC

If there is no pre-decoder which limits the incoming s_psel this will repeat:

Port Lowest address
SLVADR=10

Highest address
SLVADR=10

Lowest address
SLVADR=15

Highest address
SLVADR=15

0 0x0000_2000 0x0000_27FC 0x0004_0000 0x0004_FFFC

1 0x0000_2800 0x0000_2FFC 0x0005_0000 0x0005_FFFC

2 0x0000_3000 0x0000_37FC 0x0006_0000 0x0006_FFFC

3 0x0000_3800 0x0000_3FFC 0x0007_0000 0x0007_FFFC

0 0x0000_4000 0x0000_47FC 0x0008_0000 0x0008_FFFC

 etc.

It is common to split the address map in regions and sub regions.

Thus the first fast decoder can use MS_SLVADR = 19 splitting the APB bus in regions of 1
Mbytes.

Then each of those can have a fast decoder using MS_SLVADR = 15 / 16 splitting each 1
Mbyte region in sub regions of 64 / 128Kbytes.

MS_SLVADR = 19

PORTS = 2

MS_SLVADR = 16
PORTS = 5

MS_SLVADR = 15
PORTS = 7

0x4000_0000
0x5FFF_FFFC
...

0
x4010

_0
0

0
0

..0
x4

0
1

0
_FFFC

0x4010_0000
0x401F_FFFC

0x4020_0000
0x402F_FFFC

01

012345601234

0
x4011

_0
0

0
0

..0
x4

0
1

1
_FFFC

0
x4012

_0
0

0
0

..0
x4

0
1

2
_FFFC

0
x4013

_0
0

0
0

..0
x4

0
1

3
_FFFC

0
x4014

_0
0

0
0

..0
x4

0
1

4
_FFFC

0
x4015

_0
0

0
0

..0
x4

0
1

5
_FFFC

0
x4016

_0
0

0
0

..0
x4

0
1

6
_FFFC

0
x4010

_0
0

0
0

..0
x4

0
1

1
_FFFC

0
x4012

_0
0

0
0

..0
x4

0
1

2
_FFFC

0
x4014

_0
0

0
0

..0
x4

0
1

4
_FFFC

0
x4016

_0
0

0
0

..0
x4

0
1

6
_FFFC

0
x4018

_0
0

0
0

..0
x4

0
1

8
_FFFC

Doc rev 1.2 20-Sept.-2015

7

APB_BUS

The apb_bus.v module is a behaviour model which generates APB read and write cycles.
The apb address bus has been limited to 16 bits which is sufficient for most test-benches.

Parameters
The apb_bus.v module has two parameters:

 CLKPER : The clock period of the apb pclk signal.

 TIMEOUT : The number of clock cycles the model waits for pready to go high. If not the

code time-out and stops the simulation with an error message.

Tasks

The module has a number of internal tasks which the user can call to perform reads or
writes. For example usage just look at the test benches provided which test each of the APB
example modules.

Beware that the read and write task ‘post’ a read or write request and return immediately
after the post was successful. Thus if the tasks returns, the read or write bus cycle still has to
happen. If the bus is busy with a previous cycle, the tasks waits until that cycle has started
and then post the request and returns.

write task.

task write;

input [15:0] address;

input [31:0] data;

Post a write request.
Example usage: apb_bus0.write(16’h0000,32’h00400001);

read task.

task read;

input [15:0] address;

input [31:0] data;

Post a read request and can perform a read data check. The ‘data’ argument is what is

expected to be read. Bits which are unknown or do not need to be checked can be set to ‘x’.
Thus to ignore all the data use: 32’hxxxxxxxx for data.
Example usage: apb_bus0.read(16’h0000,32’hxx40xxx1);

If the read data does not match the module gives an error message. it also increments n
internal errors counter. e.g.

if (apb_bus0.errors!=0)

 $display(“%m: Found errors”);

delay task.

task delay;

input integer cycles;

This task waits until the APB bus has finished and then waits a number of cycles.
cycles must >=1

