Micro UART Free ware, 2015

Fen Logic Ltd.

Interface.

Hardware interface.

moc	dule micro_u	art			
(input input		clk, reset_n,	 	system clock also used for baudrate asynchronous active low reset
	<pre>// CPU bus input input input input output reg</pre>	[15:0] [15:0]	<pre>data_select, baud_select, cpu_read, cpu_write, cpu_wdata, cpu_rdata,</pre>	// // // //	High when cpu read/writes data reg. High when cpu read/writes baud reg. High when cpu does read High when cpu does write Data written by cpu Data back to cpu, 0 when cpu_read is low
);	// input output reg		ser_in, ser_out	 	Micro uart serial input Micro uart serial output

Read Cycle.

*The data_select or baud_select signals are optional. If neither is activated the status register is read.

Write Cycle.

*The data_select or baud_select signals are optional. If neither is activated the control register is written. (Except in the mini_uart which does not have a control register).

Control interface.

read	write	data_select	baud_select	operation
0	0	х	х	None
1	Х	1	х	Read receive reg.
1	Х	0	1	Read baud rate reg.
1	Х	0	0	Read status
0	1	1	х	Write transmit reg.
0	1	0	1	Write baud rate reg.
0	1	Х	х	Write control reg.
				(Only on micro_uart1 and higher)

APB interface.

psel	pwrite	address	operation
0	х	х	None
1	0	0	Read receive reg.
1	0	4	Read baud rate reg.
1	0	other	Read status
1	1	0	Write transmit reg.
1	1	4	Write baud rate reg.
1	1	other	Write control reg.
			(Only on micro_uart1 and higher)

Status register

Bit	Desciption	Version
15-5	Unused, always read as zero	
4	0 : Transmit interrupt pending	1+
	1 : No transmit interrupt pending	
	This bit will be cleared when writing the data register	
	or when disabling the transmit interrupts	
3	0 : Receive interrupt pending	1+
	1 : No receive interrupt pending	
	This bit will be cleared when reading the data register	
	or when disabling the receive interrupts	
2	0 : Transmitter busy	All
	1 : Transmitter idle	
	This bit will be cleared when writing the data register	
1	0 : Receiver OK	
	1 : Input overflow detected	All
	This bit will be cleared when reading the data register	
0	0 : Receive register is empty	
	1 : Receiver register has data	All
	This bit will be cleared when reading the data register	

Control register

Note that only the micro_uart1 and higher revisions have a control register.

Bit	Desciption	Version
15-2	Unused, ignored on write	
1	0 : Transmit interrupt disabled	1.
	1 : Transmit interrupt enabled	1+
0	0 : Receive interrupt disabled	1.
	1 : Receive interrupt enabled	1+

Baud rate

The baud rate is set by writing the baud rate register. After a rest the register is set to zero but you can change that:

baud_count <= 16'h0; // can set default baud rate here</pre>

To calculate the baud rate you must know the clock frequency (signal name = clk, revisions 1 and lower) or the reference clock frequency (signal name is ref_clock , for revisions 2 and higher). The micro UART uses eight times oversampling. The final baud rate is calculated using the following formula:

$$baud rate = \frac{clock_freq}{(baudreg + 1) * 8}$$

Or to calculate the baud register value from the required baud rate:

$$baud \ reg = \frac{clock_freq}{baud \ rate * 8} - 1$$

In the revisions < 3 the baud counter is re-loaded when it reaches zero. If the baud rate value is changed, it may make take up to 65535 clock cycles before the new value becomes active. In revision 3 and higher the baud rate counter is reloaded immediately after it is written.